亚马逊云科技在中国区域落地机器学习新服务


来源:物联传媒   时间:2021-05-27 11:46:04


当前,越来越多的企业在机器学习或人工智能层面上投入了更多的资金。机器学习项目正从试点到生产迅速发展。Gartner预测,到2024年,将有75%的公司从试生产过渡到生产。机器学习将在现代企业的业务发展和创新中发挥愈加重要的作用。

在完全托管的机器学习服务Amazon SageMaker落地中国区域一周年之际,亚马逊云科技日前宣布通过与光环新网和西云数据的紧密合作在中国区域进一步落地多项人工智能与机器学习的新服务和功能,丰富了其针对不同企业需求而打造的人工智能与机器学习 (AI/ML)工具集。

打造广泛而深入的人工智能与机器学习工具集

亚马逊云科技针对不同需求的客户在机器学习技术堆栈三个层面提供广泛而深入的机器学习服务,包括顶层-人工智能服务、中间层-机器学习服务以及底层-框架和基础架构。

在人工智能(AI)服务层面,针对没有机器学习专业知识和能力的客户,亚马逊云科技提供开箱即用的人工智能服务。Amazon Personalize,一项用于构建个性化推荐系统的完全托管型机器学习服务,已在北京区域上线。开发人员无需具备机器学习专业知识,即可通过该服务训练、调整和部署自己定制的机器学习模型,构建个性化推荐系统,可用于产品推荐、个性化营销、个性化搜索和定制化直销等广泛的个性化推荐场景。

在中间层,七项新功能让Amazon SageMaker更强大。作为亚马逊云科技机器学习服务层面的核心产品,Amazon SageMaker是业界首个面向机器学习开发者的集成开发环境,它消除机器学习过程中的繁重工作,使客户能专注于自身的业务和应用创新,在提高客户工作效率的同时还大幅降低机器学习的总体拥有成本。Amazon SageMaker在re:Invent 2020上亮相的包括SageMaker Data Wranger、SageMaker Feature Store、SageMaker Pipelines在内的七项新功能近期在北京区域和宁夏区域上线,让客户可以更轻松地构建端到端的机器学习管道。

在算力层面,亚马逊云科技在北京区域和宁夏区域推出了Amazon EC2 Inf1实例,该实例基于亚马逊云科技自研机器学习推理芯片Amazon Inferentia,与当前成本最低的基于GPU的实例相比,可以提高多达30%的吞吐量,并使每次推断的成本最高降低45%。

亚马逊云科技大中华区云服务产品管理总经理顾凡在媒体沟通会上表示:”Amazon SageMaker落地中国区域一年以来,我们见证了中国各个行业各种类型客户积极应用亚马逊云科技服务进行机器学习创新,我们希望通过将更多服务落地到中国区域,并坚持‘授人以鱼不如授人以渔’,甚至更进一步‘扶上马,送一程’的方式,帮助客户更快应用机器学习技术,把机器学习的能力交到每一位构建者手中,加速人工智能和机器学习的普惠。”

推动行业落地,坚守AI普惠使命

据悉,在中国,亚马逊云科技机器学习服务得到医疗健康、教育、出行、工业智能、游戏、新媒体等各个行业客户的青睐,在各行各业实现了丰富多样的人工智能应用创新。

山东淄博市热力集团有限责任公司利用亚马逊云科技丰富的AL/ML技术和服务,构建、训练和部署机器学习模型,实现了精准供热,可以根据气象、工控数据、建筑物维护结构等信息计算出最佳的供热模式,并给出具体的操作指令,既让用户室温始终保持人体最佳舒适温度,又做到尽可能节约成本。

“多年来,淄博热力利用信息化手段改造传统供热,通过与亚马逊云科技合作,借助机器学习能力创新,建成了基于机器学习和大数据分析的智能供热平台,帮助我们从传统供热向产业智能化方向转型,在满足用户需求的同时实现节能减排,建立绿色能源生态系统。” 淄博市能源集团公司、淄博市热力集团公司党委书记、董事长汪德刚在媒体沟通会上表示。

上海音智达信息技术有限公司是亚马逊云科技合作伙伴网络成员之一,提供围绕人工智能和大数据技术的预测性分析及商务智能解决方案的技术专家服务,帮助客户实现数字化转型。

上海音智达信息技术有限公司CEO孙晓臻表示:“我们为亚洲地区数以百计的跨国企业及本土客户提供数据服务,拥有丰富的数据分析与业务实施经验,在生命科学、快消品、汽车、零售、电子消费产品、金融、保险、以及运输行业拥有众多实践和成功案例。但是,我们在机器学习方面的算法和人才储备远远不能够满足客户需求。亚马逊云科技丰富的机器学习服务大幅提升了音智达的技术开发和服务能力,助力我们打造了覆盖不同行业和场景的解决方案,实现了业务发展和持续创新。”

如今,各种规模、各种类型的企业和机构,都在积极探索人工智能和机器学习技术的应用并希望能尽快发挥实际效应。根据过去一年的经验,亚马逊云科技针对企业应用机器学习提出四点建议:首先,企业要找到一个适合机器学习的场景作为切入点。先突破创新业务,再改造核心业务;其次避免重复造轮子,利用平台能力。让数据科学家,开发人员专注于的自己的应用和业务创新;再者,拒绝闭门造车,数据科学家要业务化,学习业务;最后,跟真心诚意赋能的厂商合作, 牢牢把握住你对数据和算法模型的所有权。

为满足不同客户的创新需求,亚马逊凭借在人工智能/机器学习领域20多年深厚的技术积累,提供了广泛而深入的、并且不断迭代创新的机器学习服务组合。以AI/ML普惠作为核心使命的亚马逊云科技在开拓之路上始终坚守着“授人以渔”的理念,摸索着真正把机器学习能力交到每一位开发者手中的关键之钥。

本文转自51CTO,作者:张洁。

  版权及免责声明:凡本网所属版权作品,转载时须获得授权并注明来源“物联之家 - 物联观察新视角,国内领先科技门户”,违者本网将保留追究其相关法律责任的权力。凡转载文章,不代表本网观点和立场。

延伸阅读

最新文章

工信部刘烈宏:我国5G基站数量占全球70%以上 工信部刘烈宏:我国5G基站数量占全球70%以上

精彩推荐

产业新闻

亚马逊云科技在中国区域落地机器学习新服务 亚马逊云科技在中国区域落地机器学习新服务

热门推荐

版权所有:物联之家 - 物联观察新视角,国内领先科技门户